Identification of Javanese Alphabet Handwritting by using Histogram Chain Code
Keywords:
chain code, histogram chain code multi layer perceptron, artificial neural network, handwriting character recognition, java characterAbstract
One of the wealth of the Indonesian nation is the number of tribes with their own language and script. One of the scripts that has existed for a long time before the independence of the Indonesian state is the Javanese script, with the use of Latin script which is used by almost every aspect of life, whether official activities or daily use, the use of traditional scripts, especially Javanese script, is increasingly rare. making it easier to learn Javanese script requires learning media with the ability to recognize Javanese characters. In this study, pre-processing is used, especially feature extraction using the Histogram Chain Code (HCC) method and classification using an artificial neural network using the Multi Layers Perceptron method. This study compares four research models by setting the number of HCC feature extraction parameters obtained from one intact image and 3 divided images of 4, 9 and 16 parts respectively so that the number of parameters of each HCC model is 8, 32, 72 and 128 parameters. characteristic. The training and testing process with the Multi Layers Perceptron method uses 2000 Javanese handwritten image data which is divided into 80%, namely 1600 images for the training process and 400 images for the testing process. This study resulted in different accuracy, namely 57%, 78%, 83% and 76%. The best accuracy is obtained from the HCC model with 72 parameters and the image is divided into 9 parts.
References
H. Surjono, “Multimedia Pembelajaran Interaktif: Konsep dan Pengembangan,” UNY Press, 2017.
“PERGUB Prov. DIY No. 64 Tahun 2013 tentang Mata Pelajaran Bahasa Jawa Sebagai Muatan Lokal Wajib di Sekolah atau Madrasah [JDIH BPK RI].” [Online]. Available: https://peraturan.bpk.go.id/Home/Details/21626. [Accessed: 30-May-2022].
Isnaeni, “PENGEMBANGAN MEDIA PEMBELAJARAN INTERAKTIF AKSARA JAWA BERBASIS FLASH PADA MATA PELAJARAN BAHASA JAWA,” 2016. [Online]. Available: http://lib.unnes.ac.id/27938/. [Accessed: 16-Apr-2022].
K. Prihatin, “PENGEMBANGAN MULTIMEDIA INTERAKTIF AKSARA JAWA UNTUK PEMBELAJARAN BAHASA JAWA SISWA KELAS V SD NEGERI SABDODADI KEYONGAN BANTUL - Lumbung Pustaka UNY,” 2015. [Online]. Available: https://eprints.uny.ac.id/17776/. [Accessed: 16-Apr-2022].
H. Freeman and L. S. Davis, “A Corner-Finding Algorithm for Chain-Coded Curves,” IEEE Trans. Comput., vol. 26, no. 03, pp. 297–303, Mar. 1977, doi: 10.1109/TC.1977.1674825.
S. Mawaddah and N. Suciati, “Pengenalan Karakter Tulisan Tangan Menggunakan Ekstraksi Fitur Bentuk Berbasis Chain Code,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, pp. 683–692, Aug. 2020, doi: 10.25126/JTIIK.2020742022.
A.-B. M. Salem, A. A. Sewisy, and U. A. Elyan, “A Vertex Chain Code Approach for Image Recognition.”
S. Arora, D. Bhattacharjee, M. Nasipuri, D. K. Basu, and M. Kundu, “Application of Statistical Features in Handwritten Devnagari Character Recognition,” Jun. 2010, doi: 10.48550/arxiv.1006.5911.
Y. Qian, W. Xichang, Z. Huaying, S. Zhen, and L. Jiang, “Recognition Method for Handwritten Digits Based on Improved Chain Code Histogram Feature,” Proc. 3rd Int. Conf. Multimed. Technol., vol. 84, pp. 431–438, Nov. 2013, doi: 10.2991/ICMT-13.2013.53.
R. Vickery, “8 Metrics to Measure Classification Performance | by Rebecca Vickery | Towards Data Science,” 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Arief Budiman, Abdul Fadlil, Rusydi Umar, Adhy Kurnia Triatmaja, Muhammad Kunta Biddinika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.